Operation optimization of battery swapping stations with photovoltaics and battery energy storage stations supplied by transformer spare capacity

Author:

Zhang Yongjun1,Yao Lanni1ORCID,Hu Liehao1,Yang Jingxu2ORCID,Zhou Xingyue1,Deng Wenyang1,Chen Biyun3

Affiliation:

1. School of Electric Power Engineering South China University of Technology Guangzhou China

2. Digital Grid Research Institute of China Southern Power Grid Guangzhou China

3. School of Electrical Engineering Guangxi University Nanning China

Abstract

AbstractDriven by the demand for carbon emission reduction and environmental protection, battery swapping stations (BSS) with battery energy storage stations (BESS) and distributed generation (DG) have become one of the key technologies to achieve the goal of emission peaking and carbon neutrality. Therefore, this paper proposes a strategy to optimize the operation of BSS with photovoltaics (PV) and BESS supplied by transformer spare capacity. Firstly, it introduces the operation mechanism of BSS and uses the spare capacity of building special transformers and the roof PV to supply power to BSS to avoid the investment of transformers. Secondly, this paper establishes the load model of BSS and proposes the charging rules of battery swapping. Thirdly, a segmented pricing mechanism for the rental price of special transformers is formulated to guide BSS operators to preferentially rent spare capacity during low load rate periods. Aiming at the maximum daily profit of BSS, an optimization model is established to optimize the number of batteries to be charged and the charging status of BESS in each period; on this basis, the demand response model is further proposed. Simulation results show that the proposed strategy can improve the daily profit of BSS through shifting load. And the configuration of BESS can improve the battery swapping capacity and peak‐shaving ability. Moreover, the exponential segmented pricing mechanism can greatly reduce the number of high load periods and reduce the burden on the power supply.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3