Affiliation:
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an China
2. State Grid Information and Telecommunication Group Co., Ltd Beijing China
3. Department of Management and Innovation Systems University of Salerno Salerno Italy
4. State Grid Shaanxi Electric Power Research Institute Xi'an China
Abstract
AbstractThe carbon capture and storage (CCS) technique gains much attention due to its role in reducing CO2 emissions. By introducing flexible CCS devices into conventional power plants, the low‐carbon economic operation of the power system can be achieved. However, the uncertainty of renewable energy makes it hard to obtain an optimal operation policy. First, the detailed model of CCS consisting of bypass venting stacks, solvent storage tanks, absorber, and stripper is described. Then, a low‐carbon economic dispatch model of the power system with CCS is proposed to minimize the total operation and renewable energy abandonment penalty costs. Next, the problem is reformulated as multi‐stage stochastic programming, and the stochastic dual dynamic programming (SDDP) method is applied to relieve the computation burden. To control the probability of stopping the algorithm prematurely, a new stopping criterion based on a two‐sided hypothesis test is proposed. Finally, the effectiveness of the proposed model and the new stopping criterion is demonstrated by case studies on a practical power system.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献