Combining weather factors to predict traffic flow: A spatial‐temporal fusion graph convolutional network‐based deep learning approach

Author:

Qi Xudong1ORCID,Yao Junfeng23,Wang Ping45,Shi Tongtong1,Zhang Yajie1,Zhao Xiangmo26

Affiliation:

1. School of Electronics and Control Engineering Chang'an University Xi'an Shaanxi China

2. School of Information Engineering Chang'an University Xi'an Shaanxi China

3. China Communications Information & Technology Group Co., Ltd Beijing China

4. School of Intelligent Systems Engineering Sun Yat‐Sen University Shenzhen Guangdong China

5. Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology Guangzhou Guangdong China

6. School of Electronic Information Engineering Xi'an Technological University Xi'an Shaanxi China

Abstract

AbstractAccurate traffic flow forecasting is a critical component in intelligent transportation systems. However, most of the existing traffic flow prediction algorithms only consider the prediction under normal conditions, but not the influence of weather attributes on the prediction results. This study applies a hybrid deep learning model based on multi feature fusion to predict traffic flow considering weather conditions. A comparison with other representative models validates that the proposed spatial‐temporal fusion graph convolutional network (STFGCN) can achieve better performance.

Funder

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3