Traffic speed prediction using GARCH‐GRU hybrid model

Author:

Ali Muhammad1ORCID,Yusof Kamaludin Mohamad1,Wilson Benjamin2,Ziegelmueller Carina3

Affiliation:

1. School of Electrical Engineering Universiti Teknologi Malaysia Skudai Johor Malaysia

2. HERE Technologies Victoria Australia

3. Michael Bauer International GmbH Karlsruhe Germany

Abstract

AbstractTraffic speed prediction is an integral part of an intelligent transportation system (ITS) because an advanced knowledge of traffic speed can help taking proactive preventive steps to avoid impending problems and it can also help in trip planning. Traffic speed data comprises a time series that may be modelled using any statistical or machine learning technique. In most of the cases, however, the performance of such models is bottlenecked due to heteroskedasticity usually present in such datasets. ARCH/GARCH family of models are generally used to model variance in such data. This paper presents a novel technique, termed as GARCH‐GRU, based on additive decomposition that splits data into random (residual) and deterministic parts. Random part is normalized using rolling standard deviation. GARCH (1, 1) is used to predict conditional variance of the residual and the predicted variance is then used in the basic model equation along with normalized residual that mimic white noise as required by the model. The data other than residual is modelled using a GRU model. The approach is applied to two datasets corresponding to a downtown road and a motorway. For comparison, the same datasets are exposed to three classical techniques; seasonal ARIMA, CNN and GRU techniques. The results demonstrate that the GARCH‐GRU technique outperforms others for random data of downtown road but fails to handle dynamic variations present in the motorway data.

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpreting the Evidence on Life Cycle to Improve Educational Outcomes of Students Based on Generalized ARC-GRU Approach;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3