Sequence‐to‐sequence transfer transformer network for automatic flight plan generation

Author:

Yang Yang12,Qian Shengsheng3,Zhang Minghua24ORCID,Cai Kaiquan24

Affiliation:

1. Research Institute for Frontier Science Beihang University Beijing China

2. State Key Laboratory of CNS/ATM Beijing China

3. Institute of Automation, CAS University of Chinese Academy of Sciences Beijing China

4. School of Electronic and Information Engineering Beihang University Beijing China

Abstract

AbstractIn this work, a machine translation framework is proposed to tackle the flight plan generation in the air transport field. Diverging from the traditional human expert‐based way, a novel sequence‐to‐sequence transfer transformer network to automatic flight plan generation with enhanced operational acceptability is presented. It allows the user to translate the departure and arrival airport pairs denoted as test sentences, into the flyable waypoint sequences denoted as the corresponding source sentences. The approach leverages deep neural networks to autonomously learn air transport specialized knowledge and human expert insights from industry legacy data. Moreover, a multi‐head attention mechanism is adopted to model the complex correlation between airport pairs. Besides, we introduce an innovative waypoint embedding layer to learn effective embeddings for waypoint sequences. Additionally, an extensive flight plan dataset is constructed utilizing real‐world data in China spanning from July to September 2019. Employing the proposed model, rigorous training and testing procedures are conducted on this dataset, yielding remarkably favourable outcomes based on automatic evaluation metrics that are BLEU and METEOR, which outperform other popular approaches. More importantly, the proposed approach achieves high performance in the operational validation and visualization, showing its application potential for real‐world air traffic operation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Scoping Review of Artificial Intelligence Applications in Airports;COMPUTATIONAL RESEARCH PROGRESS IN APPLIED SCIENCE &amp ENGINEERING;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3