Affiliation:
1. James Watt School of Engineering University of Glasgow Glasgow United Kingdom
Abstract
AbstractThis paper considers controlling automated vehicles (AVs) to form a platoon with human‐driven vehicles (HVs) under consideration of unknown HV model parameters and propulsion time constants. The proposed design is a data‐driven dual‐loop control strategy for the ego AVs, where the inner loop controller ensures platoon stability and the outer loop controller keeps a safe inter‐vehicular spacing under control input limits. The inner loop controller is a constant‐gain state feedback controller solved from a semidefinite program using the online collected data of platooning errors. The outer loop is a model predictive control that embeds a data‐driven internal model to predict the future platooning error evolution. The proposed design is evaluated on a mixed platoon with a representative aggressive reference velocity profile, the SFTP‐US06 drive cycle. The results confirm efficacy of the design and its advantages over the existing single loop data‐driven model predictive control in terms of platoon stability and computational cost.
Publisher
Institution of Engineering and Technology (IET)
Subject
Law,Mechanical Engineering,General Environmental Science,Transportation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献