Dynamic speed harmonization for mixed traffic flow on the freeway using deep reinforcement learning

Author:

Hua Chengying1ORCID,Fan Wei (David)1ORCID

Affiliation:

1. USDOT Center for Advanced Multimodal Mobility Solutions and Education (CAMMSE) Department of Civil and Environmental Engineering University of North Carolina at Charlotte Charlotte North Carolina USA

Abstract

AbstractIn the vicinity of weaving areas, freeway congestion is nearly unavoidable due to their negative effects on the continuous freeway mainline flow. The adverse impacts include increased collision risks, extended travel time, and excessive emissions and fuel consumption. Dynamic Speed Harmonization (DSH) has the potential to dampen traffic oscillation during congestion. However, its effectiveness is typically limited by the low compliance rates of drivers and delays in information access. The integration of Connected and Automated Vehicles (CAVs) into intelligent transportation systems aims to enhance various measures of effectiveness. This research investigates the effects of DSH in mixed traffic flow involving human‐driven vehicles and CAVs on the freeway. A deep reinforcement learning‐based strategy is developed to better understand how CAVs can improve operational performance. A holistic evaluation is conducted to quantify the impacts under different penetration rates of CAVs in multiple simulated scenarios. The results reveal that the proposed method can enhance mobility and achieve co‐benefits with safety, and environmental sustainability could be improved under higher penetration rates. Spatiotemporal features of bottleneck speed demonstrate that DSH powered by CAVs can smooth speed variations for partial areas. Sensitivity analysis of headways indicates that high‐level CAVs can further improve performance.

Funder

U.S. Department of Transportation

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3