Activity‐based model based on multi‐day cellular data: Considering the lack of personal attributes and activity type

Author:

Guo Yudong1ORCID,Yang Fei1ORCID,Yan Haomin2,Xie Siyuan1ORCID,Liu Haode3,Dai Zhuang1ORCID

Affiliation:

1. Department of Transportation and Logistics Southwest Jiaotong University Chengdu Sichuan People's Republic of China

2. China Railway Eryuan Engineering Group Co., Ltd. Chengdu Sichuan People's Republic of China

3. China Academy of Transportation Sciences Chaoyang District Beijing People's Republic of China

Abstract

AbstractCellular data is a sequence of base station‐interaction data that records user ID, timestamp, location area code (LAC), and cell identity (CID). With long observation periods, the data allows traffic planners to analyze coarse‐granularity user travel behaviours at low costs. However, utilizing cellular data for urban planning is not an easy task as the data lacks user socioeconomic attributes due to privacy issues. The data is also challenging to recognize user activity types. This paper proposed an activity‐based model (ABM) with skeleton schedule constraints for multi‐day cellular data. The model first infers the activity pattern and home location. Then it predicts start time, duration, and locations separately for primary and secondary activities. Next, the model infers the travel mode and path considering user multi‐day travel behaviour, path non‐linear coefficient, and transfers. Finally, a time adjustment module is proposed to avoid time conflicts in consecutive activities. The proposed activity‐based model is validated at activity, travel, and path levels. Results show that the proposed model can effectively predict activities and has much higher stability than existing ABMs based on travel surveys.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3