Affiliation:
1. College of Electronic and Information Engineering Shandong University of Science and Technology Qingdao China
2. Key Laboratory of Agricultural Blockchain Application Ministry of Agriculture and Rural Affairs Agricultural Information Institute Chinese Academy of Agricultural Sciences Beijing China
3. College of Computer Science and Engineering Shandong University of Science and Technology Qingdao China
Abstract
AbstractWith the development of intelligent transportation technology, road travel time prediction has become an important research direction. Owing to the complex periodic dependence and non‐linear features of road travel time series, achieving accurate and effective predictions remains a challenging task. Most existing traffic sequence prediction methods lack modelling of the dynamic correlation between multiple period information, resulting in unsatisfactory prediction results. To address this, a multi‐component attention graph convolutional network (MCAGCN) is proposed for road travel time prediction. First, the spatial‐temporal features of three historical components (hourly, daily and weekly) are modelled individually. A skip attention layer is then used to fuse multi‐scale spatial‐temporal features to enhance the model's feature extraction capabilities. Secondly, a component attention layer is proposed to calculate the correlation between different components using the temporal features of the prediction moment, to achieve dynamic modelling between different period information. The experimental results on the Tianchi, METR‐LA, and PeMS‐BAY datasets, which are real‐world traffic forecasting datasets, demonstrate the superiority of MCAGCN.
Funder
National Key Research and Development Program of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Law,Mechanical Engineering,General Environmental Science,Transportation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献