Affiliation:
1. Institute for Communications Technology Technische Universität Braunschweig Braunschweig Germany
2. Huawei Technologies Düsseldorf GmbH Munich Research Center Munich Germany
Abstract
AbstractFuture wireless communication systems at low terahertz frequencies (0.1–1 THz) suffer from high attenuation losses, and therefore, highly directive antennas are foreseen. As highly directive antennas have narrow beams, the alignment of the transmitter and the receiver is a crucial step in such systems. A device discovery approach using results from ray tracing (RT) combined with an iterative fine tuning is presented by the authors. A summary of previous investigations emphasises the benefits in terms of performance compared to an iterative approach. Furthermore, it indicates strong dependency of the RT output on the accuracy of the input data, that is, the environmental model. The authors extend the previous works by evaluating the impact of antenna characteristics. It is shown that the sidelobes lead to an error in the final alignment due to the superposition of the received power via multipath components, and equations to calculate the maximum error are given. Besides, the impact is evaluated with respect to sidelobe suppression. Here, equations to calculate the maximum error are given and it is shown that the sidelobes do not affect the alignment if the gain of the sidelobe is more than 30 dB lower than that of the mainlobe.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Antenna Pattern Tracking Algorithm for Low Terahertz Communications;2024 18th European Conference on Antennas and Propagation (EuCAP);2024-03-17