On the use of combined surface integral equations for the analysis of high contrast penetrable objects

Author:

Nazari Moein1,Moini Rouzbeh1ORCID,Fortin Simon1,Dawalibi Farid P.1

Affiliation:

1. SafEngServices & Technologies Ltd. Laval QC Canada

Abstract

AbstractAccurate solutions of electromagnetic scattering problems involving objects made of materials with large permittivity contrasts are considered. Problems are formulated with different commonly used combined surface integral equations (SIEs). All studied formulations are discretised through the method of moments with rooftop basis functions over flat quadrilaterals represented as bilinear surfaces, with razor‐blade functions being used for the testing procedure. The accuracy of the results is first investigated in detail for several frequencies and permittivity values using different numerical measures. It is shown that numerical instabilities may appear at frequencies corresponding to the physical resonances of the object, in particular in the near field and for large material parameter contrasts. The example of a dielectric resonator (DR) with cubic geometry is considered for the purpose of analysis, especially since to achieve smaller DR type antennas, it is necessary to use higher contrast materials. The accuracy of the combined surface integral equations to determine the natural resonant modes of the DR is investigated. It is found that the resonance modes can be accurately determined by exploring the radar cross section (RCS) of the DR in free space only if a proper combination of the electric and magnetic fields equations is applied.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3