Image super‐resolution reconstruction based on implicit image functions

Author:

Lin Hai1ORCID,Yang JunJie2

Affiliation:

1. Department of Information Science ZhanJiang Preschool Education College Guangdong China

2. College of Information Science and Technology Lingnan Normal University Guangdong China

Abstract

AbstractImage super‐resolution (SR) reconstruction is a key technique for improving image quality and details. Conventional methods are frequently limited by interpolation, filtering, or statistical approaches; thus, they are unable to reconstruct high‐quality continuously enlarged images with detailed information. This study proposes an image SR reconstruction network model, called LALNet, based on implicit image functions and residual multilayered perceptron (RAMLP) with an attention mechanism. Through the implicit image function and RAMLP + attention, high‐quality SR reconstruction with continuous scale factors is achieved, and LALNets can run on embedded edge computing platforms. This method exhibits the following advantages: lightweight network structure reduces computing requirements, introduction of implicit image functions and RAMLP improves reconstruction quality, and attention mechanism suppresses artefacts and distortions. Experimental results show that LALNet outperforms traditional and other deep learning methods in terms of reconstruction performance and computational efficiency. This research provides new ideas and methods for the further development of the field of image SR reconstruction.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3