Video object detection via space–time feature aggregation and result reuse

Author:

Duan Liang12,Yang Rongfei12,Yue Kun12ORCID,Sun Zhengbao3,Yuan Guowu12ORCID

Affiliation:

1. School of Information Science and Engineering Yunnan University Kunming China

2. Yunnan Key Laboratory of Intelligent Systems and Computing Yunnan University Kunming China

3. School of Engineering Yunnan University Kunming China

Abstract

AbstractWhen detecting the objects in videos, motion always leads to object deterioration, like blurring and occlusion, as well as the strange state of the object's shape and posture. Consequently, the detection of video frames will lead to a decline in accuracy by using the image object detection model. This paper proposes an online video object detection method based on the one‐stage detector YOLOx. First, the module for space–time feature aggregation is given, which uses the space–time information of past frames to enhance the feature quality of the current frame. Then, the module for result reuse is given, which incorporates the detection results of past frames to improve the detection stability of the current frame. By these two modules, the trade‐off between accuracy and speed of video object detection could be achieved. Experimental results on the ImageNet VID show the improvement of speed and accuracy of the proposed method.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3