BSMH: Cross‐dataset object detection based on box‐separated multiple‐head

Author:

Lu Feng1ORCID,Xu You Chun1,Qi Yao1,Xie De Sheng1,Le Li Yogn1ORCID

Affiliation:

1. Institute of Military Transportation Army Military Transportation University Tianjin China

Abstract

AbstractCross‐dataset object detection methods can adapt to the needs of rapid category expansion in object detection tasks. However, these methods are prone to generate dataset‐aware errors with false alarm objects. This study is aimed to address these issues. A box‐separated multiple‐head module and box‐separated loss function based on the YOLOv8 network are devised to achieve cross‐dataset object detection. Additionally, a sameclass‐aware fusion module to avoid gradient conflicts due to cross‐category conflicts is developed. A multiple‐head fusion module is devised to reduce the number of false alarm objects caused by dataset‐aware errors. A global class‐aware sampler is also designed to adapt to the impact of the imbalanced number of categories and training samples across datasets. The effectiveness of the box‐separated multiple‐head module is verified using cross‐datasets built using the COCO, WiderFace, WiderPerson, and OpenImages V4 datasets. Extensive experiments demonstrate the efficiency and precision of the proposed method.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3