Learning neural implicit surfaces with local probability standard variance

Author:

Nan Hai1,Zhao Kai1ORCID,Han Xuefei1,Zhao Dongjie1ORCID

Affiliation:

1. College Of Computer Science And Engineering Chongqing University of Technology Chongqing Chongqing China

Abstract

AbstractReconstructing geometric shapes from sparse multiview has always been a challenging task. With the development of neural implicit surfaces, geometry‐based volume rendering surface reconstruction methods have been proven to be able to reconstruct high‐quality surfaces. However, existing geometry‐based reconstruction methods completely associate volume density with signed distance function or unsigned distance function, resulting in the same volume density peak that can only be reconstructed near the object surface. When there are transparent surfaces in the scene, existing methods prioritize the reconstruction of opaque surfaces, neglecting the reconstruction of transparent surfaces, which is disadvantageous when reconstructing real scenes. To solve this problem, we introduce local probability standard variance, which calculates volume density together with signed distance function. In this way, it can reconstruct the volume density that matches the transparency characteristics of the object surface. The method can reconstruct the surface of transparent objects, and experiments on two transparent surface datasets show that the method performs better.

Publisher

Institution of Engineering and Technology (IET)

Reference29 articles.

1. Multiview neural surface reconstruction by disentangling geometry and appearance;Yariv L.;Adv. Neural Inf. Process Syst.,2020

2. Accurate, Dense, and Robust Multiview Stereopsis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3