LPAM: A lightweight medical segmentation network based on Mamba improved by prompt attention

Author:

Hu Kaiqi1ORCID,Xu Chudong1

Affiliation:

1. College of Electronic Engineering (College of Artificial Intelligence) South China Agricultural University Guangzhou Guangdong China

Abstract

AbstractPresently, State Space Models (SSMs), including frameworks like Mamba, have been incorporated into the realm of computer vision. These models not only sustain remote interactions and encapsulate global semantic information effectively, but also preserve linear computational complexity, offering a balance between performance and computational efficiency. Given that Mamba inherently adheres to the principle of selectivity when constructing sequence models, the goal is to further unleash the potential of Mamba through this innovative combination of convolution and self‐attention, improve accuracy and minimize the number of parameters while achieving linear complexity. Mamba is employed as an encoder to distill semantic information from the image, and it is supplemented with convolutional blocks, thereby conserving the details of the image. Concurrently, embedding prompts at a deeper level enhances its adaptability to cater to diverse requirements. Lastly, a bidirectional attention mechanism is incorporated for inference, striving to retain both global connections and local details to the maximum extent. This culminates in a novel, lightweight medical segmentation model. Exhaustive experiments were executed on six public datasets. The empirical results show that the proposed model exhibits competitive performance in medical image segmentation tasks.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3