Affiliation:
1. Beijing Key Laboratory of Information Service Engineering Beijing Union University Beijing China
2. College of Robotics Beijing Union University Beijing China
Abstract
AbstractTraffic sign detection is critical for autonomous driving technology. However, accurately detecting traffic signs in complex traffic environments remains challenge despite the widespread use of one‐stage detection algorithms known for their real‐time processing capabilities. In this paper, the authors propose a traffic sign detection method based on YOLO v8. Specifically, this study introduces the Space‐to‐Depth (SPD) module to address missed detections caused by multi‐scale variations of traffic signs in traffic scenes. The SPD module compresses spatial information into depth channels, expanding the receptive field and enhancing the detection capabilities for objects of varying sizes. Furthermore, to address missed detections caused by complex backgrounds such as trees, this paper employs the Select Kernel attention mechanism. This mechanism enables the model to dynamically adjust its focus and more effectively concentrate on key features. Additionally, considering the uneven distribution of training data, the authors adopted the WIoUv3 loss function, which optimizes loss calculation through a weighted approach, thereby improving the model's detection performance across various sizes and frequencies of instances. The proposed methods were validated on the CCTSDB and TT100K datasets. Experimental results demonstrate that the authors’ method achieves substantial improvements of 3.2% and 5.1% on the mAP50 metric compared to YOLOv8s, while maintaining high detection speed, significantly enhancing the overall performance of the detection system. The code for this paper is located at https://github.com/dusongjie/TSD‐YOLO‐Small‐Traffic‐Sign‐Detection‐Based‐on‐Improved‐YOLO‐v8
Funder
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Reference34 articles.
1. Redmon J. Divvala S. Girshick R. et al.:You only look once: Unified real‐time object detection. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp.779–788(2016)
2. Redmon J. Farhadi A.:YOLO9000: Better faster stronger. In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp.7263–7271(2017)
3. Redmon J. Farhadi A.:Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
4. Bochkovskiy A. Wang C.Y. Liao H.Y.M.:Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
5. Li C. Li L. Jiang H. et al.:YOLOv6: A single‐stage object detection framework for industrial applications. arXiv preprint arXiv:2209.02976 (2022)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献