ADIR: Advanced domain‐invariant representation via decoupling learning and information bottleneck

Author:

Zhong Yangyang12,Yan Yunfeng23ORCID,Luo Pengxin1,Zhou Yuhao4,Qi Donglian24ORCID

Affiliation:

1. Ocean College Zhejiang University Zhoushan China

2. Hainan Institute Zhejiang University Sanya China

3. School of Mechanical Engineering Zhejiang University Hangzhou China

4. College of Electrical Engineering Zhejiang University Hangzhou China

Abstract

AbstractThe discrepancy in data distribution between training and testing scenarios, as well as the inductive bias of convolutional neural networks towards image styles, reduces the model's generalization ability. Many unsupervised domain generalization methods based on feature decoupling suffer from an initial neglect of explicit decoupling of content and style features, resulting in content features that still contain considerable redundant information, thereby restricting improvements in generalization capability. To tackle this problem, this paper optimizes the learning process of domain‐invariant (content) features into an information compression issue, minimizing redundancy in content features. Furthermore, to enhance decoupled learning, this paper introduces innovative cross‐domain loss functions and image reconstruction modules that explicitly decouple and merge content and style across different domains. Extensive experiments demonstrate the method's significant enhancements over recent cutting‐edge approaches.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Reference72 articles.

1. Lin T.Y. Maire M. Belongie S. et al.:Microsoft coco: Common objects in context. In:Proceedings of the 13th European Conference Computer Vision‐ECCV 2014 pp.740‐755.Springer Cham(2014)

2. Bardes A. Ponce J. Lecun Y.:VICReg: variance‐invariance‐covariance regularization for self‐supervised learning. arXiv:2105.04906 (2021)

3. ImageNet Large Scale Visual Recognition Challenge

4. Ericsson L. Gouk H. Hospedales T.M.:How well do self‐supervised models transfer?In:Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition pp.5414–5423.IEEE Piscataway NJ(2021)

5. Zbontar J. Jing L. Misra I. et al.:Barlow twins: Self‐supervised learning via redundancy reduction. In:International Conference on Machine Learning pp.12310–12320.Microtome Publishing Brookline MA(2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3