Emotion recognition in user‐generated videos with long‐range correlation‐aware network

Author:

Yi Yun1ORCID,Zhou Jin1ORCID,Wang Hanli2ORCID,Tang Pengjie3,Wang Min1ORCID

Affiliation:

1. School of Mathematics and Computer Science Gannan Normal University Ganzhou P. R. China

2. Department of Computer Science and Technology Tongji University Shanghai P. R. China

3. College of Electronics and Information Engineering Jinggangshan University Ji'an P. R. China

Abstract

AbstractEmotion recognition in user‐generated videos plays an essential role in affective computing. In general, visual information directly affects human emotions, so the visual modality is significant for emotion recognition. Most classic approaches mainly focus on local temporal information of videos, which potentially restricts their capacity to encode the correlation of long‐range context. To address this issue, a novel network is proposed to recognize emotions in videos. To be specific, a spatio‐temporal correlation‐aware block is designed to depict the long‐range correlations between input tokens, where the convolutional layers are used to learn the local correlations and the inter‐image cross‐attention is designed to learn the long‐range and spatio‐temporal correlations between input tokens. To generate diverse and challenging samples, a dual‐augmentation fusion layer is devised, which fuses each frame with its corresponding frame in the temporal domain. To produce rich video clips, a long‐range sampling layer is designed, which generates clips in a wide range of spatial and temporal domains. Extensive experiments are conducted on two challenging video emotion datasets, namely VideoEmotion‐8 and Ekman‐6. The experimental results demonstrate that the proposed method obtains better performance than baseline methods. Moreover, the proposed method achieves state‐of‐the‐art results on the two datasets. The source code of the proposed network is available at: https://github.com/JinChow/LRCANet.

Funder

Natural Science Foundation of Jiangxi Province

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3