A wearable circulator‐like circularly polarised antenna for full‐duplex wireless body area network applications

Author:

Thakur Ajeet1ORCID,Sharma Ashwani1,Zuazola Ignacio J. Garcia2ORCID

Affiliation:

1. Electrical Engineering Department Indian Institute of Technology Ropar Punjab India

2. School of Computing and Digital Media London Metropolitan University London UK

Abstract

AbstractA circulator‐like high gain, unidirectional, dual circularly polarised (DCP) wearable antenna with a low specific absorption rate of 0.088 W/kg for 5.8 GHz industrial, scientific, and medical (ISM) band ( GHz) full‐duplex wireless body area network (WBAN) applications is proposed. The DCP full‐duplexing is achieved by a closed‐loop feedback structure between its orthogonal‐ports with enhanced axial ratio (AR) bandwidth and good impedance matching. The antenna is backed with a electromagnetic bandgap array that allows for improved directionality, AR and isolation between the ports. The cross‐polarisation level above 17 dB is attained in the broadside direction, in both the E‐plane and the H‐plane, indicating good polarisation discrimination. Since the total power at each respective port is maintained and not halved ( dB) with the measured port isolation of  dB in real scenarios (with the potential evidence of  dB) within the ISM band, that leads to a circulator‐like antenna, meaning that a typically cascaded circulator/duplexer can be relieved and leave to the digital processing any self‐interference challenge of full duplex systems through digital cancelation techniques, which alleviates the overall costs of RF hardware and eases integration. Even though dual linear polarization as well as DCP can be supported, the closed‐loop feedback structure uses a port as Tx (RHCP) and the other one as Rx (LHCP) simultaneously with enhanced AR bandwidth. Without this structure, it would require a circulator/duplexer for DCP full‐duplex operation and the associated added insertion losses and/or power (if duplexers) for operation, together with a polarisation misalignment problem that is undesired in wearable WBAN applications.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3