A hybrid arm‐multiplexing MMC for DC fault ride‐through without blocking

Author:

Wang Yi1ORCID,Li Yuwei1,Wang Chen1,Tao Jianye1

Affiliation:

1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Baoding People's Republic of China

Abstract

AbstractConsidering both the DC fault ride‐through (FRT) and lightweight requirements of modular multilevel converter (MMC), this paper proposes a hybrid arm‐multiplexing modular multilevel converter (HAM‐MMC). The phase leg of the proposed MMC topology is divided into upper, middle, and lower arms, configured with full‐bridge submodules (FBSMs), half‐bridge submodules (HBSMs), and FBSMs, respectively. The time‐division multiplexing of middle arms between upper and lower arms is achieved by introducing arm selection switches, which considerably enhances the submodule utilization and thus minimizes the submodule number. The structure and zero voltage switching strategy of arm selection switches are presented, and a modified sorting algorithm is developed for capacitor voltage balance. The negative level output capability of FBSMs in upper and lower arms allows the DC voltage to be reduced in response to DC faults. Compared with the conventional hybrid MMC composed of HBSMs and FBSMs in a 1:1 ratio, the HAM‐MMC has the same power quality and DC FRT capability, but uses 25% fewer capacitors for lightweight. Simulation results demonstrate that the proposed HAM‐MMC can smoothly ride through DC voltage dip without interrupting power transmission, and can also rapidly resume normal operation after a zero‐voltage disturbance.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Compact Hybrid MMC with DC Fault Ride-Through Capability;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3