Tight power and energy coupling constraints of energy storage resources for unit commitment

Author:

Yu Yaowen1ORCID,Yan Bing2ORCID,Gao Yijie1,Li Yuanzheng1ORCID,Sun Liangliang3

Affiliation:

1. Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan Hubei China

2. Electrical and Microelectronic Engineering Rochester Institute of Technology Rochester New York USA

3. School of Control Engineering Northeastern University Shenyang Liaoning China

Abstract

AbstractEnergy Storage Resources (ESRs) can help promote high penetrations of renewable generation and shift the peak load. However, the increasing number of ESRs and their features different from conventional generators bring computational challenges to operations of wholesale electricity markets. In order to improve the computational efficiency, this paper tightens the generic ESR formulation for unit commitment. To avoid the complexity caused by ESR operations in both discharge and charge directions, a novel “decoupled analysis” is conducted to analyze one direction at a time. For each direction, ESRs over two and three time periods are categorized into several types based on their parameters. For each type, our recent four‐step systematic formulation tightening approach is used to construct the corresponding tight formulation. In order to consider more periods without analyzing all the drastically increased number of types, a series of major types are selected based on how many periods an ESR is able to discharge (charge) consecutively at the upper power limit. A related generic form of tight constraints over multiple periods is established. Moreover, validity and facet‐defining proofs of our tight constraints have been provided. Numerical testing results illustrate the tightening process and demonstrate computational benefits of the tightened formulations.

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3