Exergy analysis and particle swarm optimization of clean energy router based on a solar‐thermal‐assisted advanced adiabatic compressed air energy storage system

Author:

Ni Chenyixuan1,Chen Laijun2,Chen Xiaotao2,Zhai Junyi3,Mei Shengwei2,Zhang Xiao‐Ping1ORCID

Affiliation:

1. EESE Department, School of Engineering University of Birmingham Edgbastion Birmingham UK

2. Qinghai Key Lab of Efficient Utilization of Clean Energy (New Energy Photovoltaic Industry Research Center) Qinghai University Xining People's Republic of China

3. The College of New Energy China University of Petroleum (East China) Qingdao People's Republic of China

Abstract

AbstractThe clean Energy router based on advanced adiabatic compressed air energy storage (AA‐CAES) has the characteristics of large capacity, high efficiency and zero carbon emission which are an effective mitigation scheme for the integration of renewables and peak‐shaving and a new clean energy technology for storing energy in the world. A novel solar‐thermal‐assisted AA‐CAES (ST‐AA‐CAES) is proposed in this paper, integrating variable thermal energy storage to improve the system electric to electric (E2E) and round‐trip efficiency (RTE). The efficiency and exergy evaluation of ST‐AA‐CAES are carried out to determine the performance of ST‐AA ‐CAES. The results illustrate that E2E, RTE, and exergy efficiency can reach 56.4%, 95.5%, and 55.9%, respectively. Meanwhile, the details of exergy efficiency and destruction of each subsystem are demonstrated. Particle swarm optimization algorithm is applied to analyse the economy of optimally integrated energy systems which has the advantages of high accuracy, convenient implementation and fast convergence. The system can be applied in abundant solar energy resources area with high efficiency and multi‐energy supply capability.

Funder

Engineering and Physical Sciences Research Council

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3