Affiliation:
1. Department of Electrical Engineering Razi University Kermanshah Iran
2. Department of System Engineering and Automatic Control University of Seville Seville Spain
3. Department of Electrical and Computer Engineering University of Windsor Windsor Ontario Canada
4. Electrical and Computer Engineering and Computer Science Department University of New Haven West Haven Connecticut USA
Abstract
AbstractIn high voltage direct current (HVDC) grids, the reference values of power controllers are normally adjusted based on the DC‐link voltage as the DC voltage is regulated by the droop controllers. As a matter of fact, except for the DC slack bus, there is a trade‐off between power‐sharing and voltage regulation of all the remaining HVDC buses. The main issue with this control strategy is that in case of contingencies, significant voltage and power oscillations throughout HVDC grids can be expected. To address such issues, the integration of a battery energy storage system into HVDC grids through a multi‐port DC/DC power converter is investigated in this paper. The DC/DC converter used in this paper consists of three ports: (1) two ports are connected in cascade with the intended DC transmission line, formerly named cascaded power flow controller, and (2) the third port is for the integration of the battery energy storage system to form a multi‐functional device. Therefore, the proposed framework can potentially achieve small‐signal stability enhancement and regulate/adjust the power throughout the HVDC grids.
Publisher
Institution of Engineering and Technology (IET)
Subject
Renewable Energy, Sustainability and the Environment
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献