A localization scheme based on Improving Dynamic Population Monte Carlo Localization method for large‐scale mobile wireless aquaculture sensor networks

Author:

Lv Chunfeng1,Zhu Jianping1ORCID,Chen Gang2

Affiliation:

1. SOU College of Engineering Science and Technology Shanghai Ocean University Shanghai China

2. Information and Publicity Center Yunnan Provincial Department of Agriculture and Rural Affairs Kunming China

Abstract

AbstractLocalization is one of the essential problems in wireless sensor applications (WSNs). Most range‐free localization schemes for mobile WSNs are based on the Sequential Monte Carlo (SMC) algorithm. Multiple iterations, sample impoverishment and less sample diversity, leading to low localizing efficiency, are the most usual problems demanding to be solved in these SMC‐based methods. An improved localization scheme for mobile aquaculture WSNs based on the Improving Dynamic Population Monte Carlo Localization (I‐DPMCL) method is proposed. A population of probability density functions is proposed to approximate the unknown location distribution based on a set of observations through an iterative mixture importance sampling procedure, accompanied by node dynamic behaviours being analysed quantitatively or definitely. Threefold constrain rules are put forward in the I‐DPMCL scheme to decrease the iteration number and trade off iteration number and enough valid samples to obtain the optimum iteration number. Then, these localization behaviours, especial delay, are predicted based on the statistical point of view. Moreover, performance comparisons of I‐DPMCL with other SMC‐based schemes are also proposed. Simulation results show that delay of I‐DPMCL has some superiority to those of other schemes, and accuracy and energy consumption are improved in some cases of lower mobile velocity.

Publisher

Institution of Engineering and Technology (IET)

Subject

Industrial and Manufacturing Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3