IoT and machine learning models for multivariate very short‐term time series solar power forecasting

Author:

Kyi Su1ORCID,Taparugssanagorn Attaphongse1

Affiliation:

1. ICT Department School of Engineering and Technology IoT Systems Engineering Asian Institute of Technology Pathum Thani Thailand

Abstract

AbstractIn solar energy generation, the inherent variability caused by cloud cover and weather events often leads to sudden fluctuations in power outputs. Addressing this challenge, the authors’ study focuses on very short‐term solar irradiance (SI) prediction. Leveraging multivariate time series datasets, the authors improve very short‐term SI predictions. To achieve accurate very short‐term SI predictions, the authors employ machine learning techniques throughout the forecasting process. Additionally, the authors’ work pioneers the integration of the Internet of Things (IoT) into solar power systems, a novel approach in the field. The authors leverage LoRa (long range) technology for low‐cost, low‐power, and long‐range wireless control networks. The authors’ study focuses on SI forecasting using long short‐term memory and bi‐directional long short‐term memory (Bi‐LSTM) models, achieving high accuracy. The SI forecasts are evaluated in terms of root‐mean‐square error (RMSE) and mean absolute error in relation to meteorological data and sky image data. The improvement in performance can be attributed to the Bi‐LSTM's bidirectional nature, allowing it to incorporate future information during training, thereby enhancing its predictive capabilities. Overall, the results suggest that the Bi‐LSTM model is more suitable for accurately forecasting SI, particularly in scenarios requiring short‐term predictions based on rapidly changing environmental factors.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3