An embedded and intelligent anomaly power consumption detection system based on smart metering

Author:

Lazim Qaddoori Sahar1ORCID,Ali Qutaiba Ibrahim2

Affiliation:

1. Electronic Department Electronics Engineering College Ninevah University Mosul Iraq

2. Computer Engineering Department Engineering College Mosul University Mosul Iraq

Abstract

AbstractUser behaviour, human mistakes, and underperforming equipment contribute to wasted energy in buildings and industries. Identifying anomalous consumption power behaviour can help to reduce peak energy usage and change undesirable user behaviour. Furthermore, decreasing energy consumption in buildings is difficult because usage patterns vary from one building to the next. So, the main contribution in this manuscript is to propose a lightweight architecture for smart meter to identify abnormalities in power consumption for each building individually using machine learning (ML) models and implement on a Single Board Computer. To detect daily and periodic pattern anomalies, two models of anomaly detection based on supervised and unsupervised ML algorithms are built and trained where numerous algorithms were utilised to select the best algorithm for each model. Also, the proposed approach enables iterative procedure modifications by retraining the two anomaly detection models on data aggregator server based on the received data meter from the specific smart meter to give better power service to clients while minimising provider losses. The effectiveness and efficiency of the suggested approach have been proven through extensive analysis.

Publisher

Institution of Engineering and Technology (IET)

Subject

Industrial and Manufacturing Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3