Performance improvement for machine learning‐based cooperative spectrum sensing by feature vector selection
Author:
Affiliation:
1. State Key Laboratory of Integrated Service NetworksXidian UniversityXian710071People's Republic of China
2. School of Information and Control EngineeringChina University of Mining and TechnologyXuzhou221116People's Republic of China
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shaanxi Province
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Science Applications
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-com.2019.0579
Reference28 articles.
1. Cognitive radio: brain-empowered wireless communications
2. Analyzing the performance of spectrum sensing in cognitive radio systems with dynamic PU activity;MacDonald S.;IEEE Commun. Lett.,2017
3. Sequential 0/1 for cooperative spectrum sensing in the presence of strategic Byzantine attack;Wu J.;IEEE Wirel. Commun. Lett.,2018
4. Energy-Efficient Cooperative Spectrum Sensing: A Survey
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Adaptive Method Based on Frequency Correlation for Wideband Spectrum Sensing;IEEE Transactions on Vehicular Technology;2024-07
2. Coordinated Development of Civic Education and Student Management in Colleges and Universities Incorporating Principal Component Analysis Approach;Applied Mathematics and Nonlinear Sciences;2023-12-18
3. A Cross-Layer Optimization Technique Based on Bayesian Reinforcement Learning Extended POMDP Model for Dynamic Spectrum Access;2022 IEEE 22nd International Conference on Communication Technology (ICCT);2022-11-11
4. Deep Reinforcement Learning based reliable spectrum sensing under SSDF attacks in Cognitive Radio networks;Journal of Network and Computer Applications;2022-09
5. A Brief Review of Machine Learning Algorithms for Cooperative Spectrum Sensing;Journal of Physics: Conference Series;2021-04-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3