Intelligent train stopping control for railways: A deep learning approach

Author:

Chen Xing12,Yin Jiateng34ORCID,Ning Chenhe5

Affiliation:

1. School of Information Management Jiangxi University of Finance and Economics Nanchang Jiangxi China

2. Nanchang Rail Transit Group Limited Corporation Nanchang Jiangxi China

3. State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Beijing China

4. School of Systems Science Beijing Jiaotong University Beijing China

5. Hollysys Beijing China

Abstract

AbstractStation parking accuracy is an important indicator for the automatic control of high‐speed trains; however, it is subject to many influencing factors, such as the characteristics of high nonlinearity and large time delays in the train control model, time‐variant humidity, and uncertain weather conditions, leading to unsatisfying performance with existing feedback control algorithms. This study first proposes an intelligent train stopping control approach based on deep learning for high‐speed railways. By collecting a large amount of historical train operation data from the Beijing–Shenyang high‐speed railway, three data‐driven models are developed for train stopping control. The first model is based on a deep‐layered feedforward neural network (DNN), which predicts the exact train stopping position with dynamic train running states (position, velocity etc.) as input. Taking advantage of the physical train control models used in practice, the DNN to a convolutional neural network (CNN) is then improved by customizing the convolutional layers of the CNN. To overcome the issues arising from the incompleteness of data samples, a few‐shot convolutional neural network (FSCNN) is further developed to enhance the prediction performance of the CNN. Compared with that of the current method used in practice, the simulation experiments show that the train station parking error can be decreased by 38.6%, 42.8%, and 49.2% by our developed DNN, CNN, and FSCNN, respectively.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3