Model for the cooperative obstacle‐avoidance of the automated vehicle swarm in a connected vehicles environment

Author:

Zhai Donghai1,Yang Da2,Chen Jing2,Luo Ziqi2,Yu Mengsi1,Zhou Zihan2

Affiliation:

1. School of Computing and Artificial Intelligence Southwest Jiaotong University Chengdu China

2. School of Transportation and Logistics, National Engineering Laboratory of Integrated Transportation Big Data Application Technology, National United Engineering Laboratory of Integrated and Intelligent Transportation Southwest Jiaotong University Chengdu China

Abstract

AbstractThe obstacle‐avoidance problem of automated vehicles is a hot topic in the community of autonomous driving. The majority of the existing studies focused on the obstacle‐avoidance of a single automated vehicle. The connected vehicles technology provides the possibility of controlling a vehicle swarm to avoid the obstacle cooperatively. Through cooperation, the vehicle swarm not only can avoid an obstacle safely but also can minimize traffic delays. Therefore, this paper proposes a cooperative obstacle‐avoidance model for the automated vehicle swarm driving on the freeway based on the A2C reinforcement learning. The proposed model considers the efficiencies of both the individual and swarm in the learning, and a cooperative lane‐changing execution model is proposed to ensure that the optimal decision made by the A2C algorithm can be performed by the vehicles. Furthermore, simulations are conducted to verify the proposed model. The results indicate that the proposed model can significantly improve the overall traffic efficiency compared with the existing models. In a congested state, when the proposed model is applied to control vehicles, an optimal control range can be found (i.e. 700 m here), and within this optimal range, the traffic efficiency increases with the increment of the number of the vehicles controlled by the proposed model.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3