Affiliation:
1. Department of Intelligent Mechanical Systems Engineering Kagawa University Takamatsu Japan
2. Nano‐Micro Structure Device Integrated Research Center Kagawa University Takamatsu Japan
Abstract
AbstractTo enable the accurate reproduction of organs in vitro, and improve drug screening efficiency and regenerative medicine research, it is necessary to assemble cells with single‐cell resolution to form cell clusters. However, a method to assemble such forms has not been developed. In this study, a platform for on‐site cell assembly at the single‐cell level using optically driven microtools in a microfluidic device is developed. The microtool was fabricated by SU‐8 photolithography, and antibodies were immobilised on its surface. The cells were captured by the microtool through the bindings between the antibodies on the microtool and the antigens on the cell membrane. Transmembrane proteins, CD51/61 and CD44 that facilitate cell adhesion, commonly found on the surface of cancer cells were targeted. The microtool containing antibodies for CD51/61 and CD44 proteins was manipulated using optical tweezers to capture HeLa cells placed on a microfluidic device. A comparison of the adhesion rates of different surface treatments showed the superiority of the antibody‐immobilised microtool. The assembly of multiple cells into a cluster by repeating the cell capture process is further demonstrated. The geometry and surface function of the microtool can be modified according to the cell assembly requirements. The platform can be used in regenerative medicine and drug screening to produce cell clusters that closely resemble tissues and organs in vivo.
Funder
Japan Society for the Promotion of Science
Japan Science and Technology Agency
Precursory Research for Embryonic Science and Technology
Ministry of Education, Culture, Sports, Science and Technology
Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Biotechnology,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献