Pb2+ recovery from real water samples by adsorption onto nano Fe3O4/chitosan‐acrylamide hydrogel ions in real water samples

Author:

Samadzadeh Mamaghani Arman1,Manafi Mohammadreza1ORCID,Hojjati Mohammad1

Affiliation:

1. Faculty of Science Department of Applied Chemistry South Tehran Branch Islamic Azad University Tehran Iran

Abstract

AbstractThis study examined the removal of Pb(II) using magnetic chitosan hydrogel adsorbent from diverse sample waters. Spectrometry was used to track the effects of magnetic acrylamide nanocomposite dose, pH extraction, and contact duration on Pb(II) removal from sample water. This research also looked at adsorption isotherm models for the sorption of Pb(II). The magnetic chitosan hydrogel adsorbent Pb(II) adsorption capability was 31.74 mg/g respectively. The Freundlich isotherm model fits the removal of Pb(II) utilising magnetic chitosan hydrogel adsorbent. In addition, this adsorbent was shown to have a qmax value of 31.74 mg/g of Pb2+ ions, which is considered to be of high efficiency for Pb2+ ion removal. The studied kinetic models have determined that the pseudo‐second‐order linear model is more suitable to explain the adsorption of lead (II) on magnetic chitosan hydrogel adsorbent. Also, chemical adsorption is the rate‐limiting step in the adsorption process of lead (II) ions.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Biotechnology,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3