Synthesis of Zeolitic imidazolate frameworks‐8@ layered double hydroxide polyhedral nanocomposite with designed porous voids as an effective carrier for anti‐cancer drug‐controlled delivery

Author:

Dilmaghani Azita12,Hosseini Kamran34,Tarhriz Vahideh15ORCID,Yousefi Vahid5

Affiliation:

1. Infectious and Tropical Diseases Research Center Tabriz University of Medical Sciences Tabriz Iran

2. Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran

3. Student Research Committee Shiraz University of Medical Sciences Shiraz Iran

4. Department of Molecular Medicine Faculty of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz Iran

5. Molecular Medicine Research Center Biomedicine Institute Tabriz University of Medical Sciences Tabriz Iran

Abstract

AbstractIn nanotechnology, compounds containing metal materials are used in pharmaceutical sciences. The main purpose of this research was to introduce a novel method to control the amount of zeolite imidazolate framework (ZIF) in water by forming a protective layer such as layered double hydroxide (LDH). Firstly, ZIF was synthesised as the nucleus of the nanocomposite, and then LDH was formed by in situ synthesis as a protective layer. Scanning electron microscope, Fourier‐transform infrared spectroscopy, X‐Ray Diffraction, and Brunauer, Emmett and Teller techniques were used to determine (ZIF‐8@LDH chemical structure and morphology. Our findings revealed that the ZIF‐8@LDH‐MTX complex could interact with carboxyl groups and trivalent cations by creating a bifurcation bridge, clarity, and high thermal stability. The antibacterial test indicated that ZIF‐8@LDH was able to inhibit pathogenic growth. 2,5‐Diphenyl‐2H‐Tetrazolium Bromide assay results showed that ZIF‐8@LDH alone had no notable cytotoxic effect on Michigan Cancer Foundation‐7 (MCF‐7) cancer cells. However, the cytotoxicity rate was significantly increased in treated MCF‐7 cells with ZIF‐8@LDH‐MTX compared to that of treated cells with methotrexate alone, which can be reasoned by the protection of drug structure and increasing its permeability. The drug release profile was constant at pH = 7.4. All findings indicated that the ZIF‐8@LDH complex could be considered a newly proposed solution for effective anti‐cancer drug delivery.

Funder

Tabriz University of Medical Sciences

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Biotechnology,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3