Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability

Author:

Tabassum Zeba1ORCID,Mohan Anand1ORCID,Mamidi Narsimha23,Khosla Ajit4,Kumar Anil5,Solanki Pratima R.6,Malik Tabarak7ORCID,Girdhar Madhuri1

Affiliation:

1. School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab India

2. Department of Chemistry and Nanotechnology The School of Engineering and Science Tecnologico de Monterrey Monterrey Nuevo Leon Mexico

3. Wisconsin Center for NanoBioSystmes University of Wisconsin Madison Wisconsin USA

4. School of Advanced Materials and Nanotechnology Xidian University Xi'an China

5. Gene Regulation Laboratory National Institute of Immunology New Delhi India

6. Special Center for Nanoscience Jawaharlal Nehru University New Delhi India

7. Department of Biomedical Sciences Institute of Health Jimma University Jimma Ethiopia

Abstract

AbstractUncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long‐term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio‐based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum‐based polymers in terms of cost‐effectiveness, environmental friendliness, and user‐friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter‐firm collaboration on the path to a near‐zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review‐based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Biotechnology,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3