Robotic disassembly sequence planning considering parts failure features

Author:

Cui Jia12,Yang Can12,Zhang Jinliang12,Tian Sisi12ORCID,Liu Jiayi12,Xu Wenjun12

Affiliation:

1. School of Information Engineering Wuhan University of Technology Wuhan China

2. Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks Wuhan University of Technology Wuhan China

Abstract

AbstractDisassembly is an important step in remanufacturing products. Robotic disassembly helps to improve disassembly efficiency. However, the end‐of‐life products often have the parts with uncertain quality, which is manifested as wear, fracture, deformation, corrosion, and other failure features. The parts failure features always have impacts on disassembly process. First, the evaluation method of parts failure features is researched, and the quantitative model of parts failure features is constructed using fuzzy models. Then, the disassembly information model is established by considering the influence of different failure degrees on the robotic disassembly process. Afterwards, to generate the optimal disassembly solution, deep reinforcement learning (DRL) is used to solve robotic disassembly sequence planning problem which considers parts failure features. Considering the influence of parts failure features on robotic disassembly time, the states, actions and rewards and environment are designed in DRL. Finally, a case study of the double shaft coupling as a waste product is carried out, and the proposed method is compared with the other methods to verify the effectiveness.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Computer Science Applications,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3