A short‐term electricity consumption forecasting approach based on feature processing and hybrid modelling
Author:
Affiliation:
1. College of Electrical Engineering Shanghai University of Electric Power Shanghai People's Republic of China
2. College of Computer Science and Technology Shanghai University of Electric Power Shanghai People's Republic of China
Funder
National Natural Science Foundation of China
Program of Shanghai Academic Research Leader
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/gtd2.12409
Reference41 articles.
1. KhatoonS.&SinghA.K.et al.: Analysis and comparison of various methods available for load forecasting: An overview. In: 2014 Innovative Applications of Computational Intelligence on Power Energy and Controls with their impact on Humanity (CIPECH). Ghaziabad India pp. 243–247 (2014)
2. Day-ahead short-term load probability density forecasting method with a decomposition-based quantile regression forest
3. DehalwarV. KalamA. KolheM.L. ZayeghA.:Electricity load forecasting for urban area using weather forecast information. In:2016 IEEE International Conference on Power and Renewable Energy (ICPRE).Shanghai China pp.355–359(2016)
4. Probabilistic load forecasting via quantile regression averaging on sister forecasts;Liu B.;IEEE Trans. Smart Grid,2015
5. Conventional models and artificial intelligence-based models for energy consumption forecasting: A review
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Choosing a Strategy for Time-limited Designing of Power Distribution Grids With Consideration of Mode Constraints;2024 Ninth Junior Conference on Lighting (Lighting);2024-06-04
2. Intelligent Regression Load Forecasting for Non-Uniform Urban Load;2023 24th International Middle East Power System Conference (MEPCON);2023-12-19
3. Short-Term Electricity Consumption Forecasting for a Steel Enterprise;2023 International Russian Automation Conference (RusAutoCon);2023-09-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3