Optimizing performance of a reduced switch multi‐level inverter with moth‐flame algorithm and SHE‐PWM

Author:

Shanono Ibrahim Haruna12ORCID,Abdullah Nor Rul Hasma1ORCID,Daniyal Hamdan1ORCID,Muhammad Aisha2ORCID

Affiliation:

1. Faculty of Electrical and Electronics Engineering Universiti Malaysia Pahang Pekan Pahang Malaysia

2. Department of Mechatronics Faculty of the Engineering Bayero University Kano Kano Nigeria

Abstract

AbstractMulti‐level inverters are widely used in high‐voltage and high‐power applications due to the increasing demand for renewable energy. This study proposes a novel single‐phase reduced switch multi‐level inverter topology that generates 11 levels of output voltage steps, operates in asymmetric mode, and uses fewer power electronic switches with efficient switching control. To optimize the inverter's performance, Moth Flame Optimization (MFO), Particle Swarm Optimization (PSO), and Whale Optimization Technique (WOA) are utilized to apply the selective harmonic elimination technique. The proposed circuit is implemented in PSIM software using optimized switching angles, and the fitness functions and switching angles for the three optimizers are evaluated and reported. The inverter's performance at optimal modulation points for the three optimizers is computed and analyzed, with the Total Harmonic Distortion (THD) measured at 0.82 modulation point before and after filtering. Results show that MFO outperforms PSO and WOA with the lowest THD values of 0.85% and 0.78%, respectively; therefore, complying with the IEEE 519 standard. The experimental validation of MFO's superiority is performed using the Typhoon HIL‐402 hardware device. This study provides a promising solution for the design and optimization of multi‐level inverters, paving the way for more efficient and reliable renewable energy systems.

Publisher

Institution of Engineering and Technology (IET)

Subject

General Engineering,Energy Engineering and Power Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3