Spatial variation of moisture content along the axial distance of corn at different superheated steam drying temperatures and various instantaneous times

Author:

Keter Charles Kiprono Sang1ORCID,Kimwa Mercy Jepchirchir2

Affiliation:

1. Department of Accounting and Finance Moi University Eldoret Kenya

2. Mechanical Engineering Dedan Kimathi University of Technology Nyeri Kenya

Abstract

AbstractSuperheated steam acts as both a heat source and a drying medium. The study sought to predict the evolution of the moisture transport behaviour of the corn kernel at various axial distances at varying instantaneous time. The equations describing the drying phases were solved using numerical solutions with the Eulerian technique in ANSYS software. Cone geometry was used to simulate the corn kernel with initial moisture content at 20% w.b. Steam conditions were similar to what is encountered in industry, with temperatures ranging (from 120–200°C) at 1.5 m s−1 velocity. ANOVA was used to determine if there was difference between the conditions. The temporal change in moisture from the apex to the periphery varied at superheated steam temperatures 120, 160 and 200°C. At 10, 100 and 200 s the drying rate and effective moisture diffusivity of corn kernel from the centre towards the periphery differed. Post‐hoc analysis with Bonferroni adjustment revealed that moisture content (w.b.%) differed between 10 and 100 s, 10 and 200 s and 100 and 200 s. The mean difference was attributed to the drying being in the falling drying phase at 200 s and initial condensation at 10 s. Thus, at high superheated steam temperatures, dry zones can be seen as the axial distance from the apex increases toward the periphery.

Publisher

Institution of Engineering and Technology (IET)

Subject

General Engineering,Energy Engineering and Power Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3