An aerial targets grouping method based on relation network

Author:

Liang Futai12ORCID,Zhou Yan1,Dong Jialong3,Chen Xin1,Tang Xiao1

Affiliation:

1. Early Warning Academy Wuhan China

2. 31121 PLA Troops Nanjing China

3. 95980 PLA Troops Xiangyang China

Abstract

AbstractAerial targets grouping is an important content of air battlefield situation awareness, and intelligent aerial targets grouping is an urgent need for intelligent air combat. Traditional aerial targets grouping methods have problems such as difficulty extracting air target features, difficulty designing formation similarity measures, and lack of data samples. To solve the above problems, this paper proposes a relational network based aerial targets grouping method to achieve end‐to‐end grouping under small sample conditions. Firstly, an adaptive clustering algorithm is proposed to preliminarily cluster the aerial targets in the air battlefield situation to obtain the group to be tested. Then, a representation of aerial target groups is designed, which unifies the multi‐dimensional features of the group's temporal, spatial, and attribute. Next, based on this representation, combining 3D convolutional neural networks (3DCNN) and long short‐term memory (LSTM), a neural network structure that can automatically extract multi‐dimensional features of groups is designed. After that, the relation module is used to learn the distance metric between groups. After training the relation network, the type of group to be tested can be identified, thereby achieving the goal of grouping. A dataset of 30 types of aerial target group patterns was established through simulation. The ablation experiments were conducted to verify the performance of each module, and the experimental results showed that the designed feature extraction module can effectively extract temporal sample features, while the designed relationship module performs better in extracting temporal sample information. By comparing several typical traditional aerial target grouping methods, the proposed method improves the grouping accuracy by 11.2% to 13.4%, achieving an accuracy of 91.1% in the 5‐way 1‐shot task and 95.6% in the 5‐way 5‐shot task.

Publisher

Institution of Engineering and Technology (IET)

Subject

General Engineering,Energy Engineering and Power Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3