Affiliation:
1. Zhangjiakou Cigarette Factory Co., Ltd Zhangjiakou Heibei China
Abstract
AbstractTo achieve real‐time and effective prediction of industrial site risks, this paper proposes an industrial risk prediction framework for multimodal data based on edge computing. First, the authors gather and annotate industrial risk multimodal data that consist of text descriptions, images, and videos. Then, the authors transfer the data to the edge server, and apply deep learning models such as Bidirectional Encoder Representations from Transformers (BERT), ResNet etc., to extract features and learn representations for text, image, and video data respectively. The authors input the fused feature data into an enhanced long short term memory (LSTM) model and train it on the dataset. Finally, the authors perform the risk prediction based on the collected multimodal data. The experimental results demonstrate that the method proposed in this paper exhibits superior performance, achieving a 1.4% enhancement in predictive accuracy.
Publisher
Institution of Engineering and Technology (IET)