Temporal convex combination‐based secure distributed estimation against cyberattacks and noisy input

Author:

Zhang Zhanxi1,Jia Lijuan1ORCID,Peng Senran1,Yang Zi‐Jiang2,Tao Ran1

Affiliation:

1. School of Information & Electronics Beijing Institute of Technology Beijing China

2. Department of Mechanical Systems Engineering College of Engineering Ibaraki University Mito Ibaraki Japan

Abstract

AbstractThis paper proposes a new secure distributed estimation for cyber‐physical systems against adversarial attacks with noisy input. To mitigate the effect of attacks, a novel distributed attack detection based on a reliable reference estimation obtained by temporal convex combination is proposed. Furthermore, for more effective and robust performance, an adaptation rule to adjust convex combination weights is presented, in which the generalized correntropy method with nonlinear loss function and stochastic gradient descent are utilized. Besides, to eliminate input noise, a bias‐compensation method in local adaptation of the secure distributed estimation is proposed. Simulations show superior dynamic and real‐time adaptability of the proposed algorithm under complex attacking scenarios.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3