Acoustic echo cancellation based on two‐stage BLSTM

Author:

Niu Zhiwei1ORCID,Ou Shifeng1,Song Peng2,Gao Ying1ORCID

Affiliation:

1. School of Physics and Electronic Information Yantai University Yantai China

2. School of Computer and Control Engineering Yantai University Yantai China

Abstract

AbstractAcoustic echo cancellation (AEC) methods aim to suppress the acoustic coupling for hands‐free speech communication. Traditional AEC works by identifying the acoustic impulse response using adaptive algorithms. With recent research advances, deep learning has become an attractive choice for AEC. This paper introduces a two‐stage bidirectional long short term memory (TS‐BLSTM) framework, incorporating multi‐head self‐attention mechanisms after each BLSTM block. This is aimed at better capturing contextual information and further enhancing ability of the model to handle complex acoustic scenarios. The BLSTM blocks are utilized to aggregate magnitude spectrum information, modelling both time and frequency dependencies. Additionally, dilation convolution is introduced to broaden the range of information in each convolution output. The magnitude decoder estimates a mask for the input, resulting in the generation of an estimated magnitude spectrum for near‐end speech. Experimental results indicate that the proposed method achieves promising outcomes.

Funder

Natural Science Foundation of Shandong Province

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3