Initial state‐dependent implementation of logic gates with memristive neurons

Author:

Rajki Franciska1,Horváth András1ORCID,Ascoli Alon2,Tetzlaff Ronald3

Affiliation:

1. Faculty of Information Technology and Bionics Peter Pazmany Catholic University Budapest Hungary

2. Department of Electronics and Telecommunications Politecnico di Torino Turin Italy

3. Institute of Circuits and Systems TUD | Dresden University of Technology Dresden Germany

Abstract

AbstractThis study introduces a simple memristor cellular neural network structure, a minimalist configuration with only two cells, designed to concurrently address two logic problems. The unique attribute of this system lies in its adaptability, where the nature of the implemented logic gate, be it AND, OR, and XOR, is determined exclusively by the initial states of the memristors. The memristors' state, alterable through current flow, allows for dynamic manipulation, enabling the setting of initial conditions and consequently, a change in the circuit's functionality. To optimize the parameters of this dynamic system, contemporary machine learning techniques are employed, specifically gradient descent optimization. Through a case study, the potential of leveraging intricate circuit dynamics is exemplified to expand the spectrum of problems solvable with a defined number of neurons. This work not only underscores the significance of adaptability in logical circuits but also demonstrates the efficacy of memristive elements in enhancing problem‐solving capabilities.

Publisher

Institution of Engineering and Technology (IET)

Reference30 articles.

1. Krizhevsky A. Nair V. Hinton G.:The cifar‐10 dataset.https://www.cs.toronto.edu/~kriz/cifar.html(2014). Accessed 8 Apr 2024

2. Simonyan K. Zisserman A.:Very deep convolutional networks for large‐scale image recognition. arXiv:1409.1556(2014)

3. He K. et al.:Deep residual learning for image recognition. In:Proceedings of the IEEE Conference on Computer Vision and Pattern recognition pp. 770–778(2016)

4. Language models are unsupervised multitask learners;Radford A.;OpenAI blog,2019

5. Language models are few‐shot learners;Brown T.;Adv. Neural Inf. Process. Syst.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3