Kernel‐risk‐sensitive conjugate gradient algorithm with Student's‐t distribution based random fourier features

Author:

Tang Shenjie1ORCID,Li Xifeng1,Bi Dongjie1,Tang Yu1,Xie Xuan1,Li Zhenggui2,Xie Yongle1

Affiliation:

1. University of Electronic Science and Technology of China Chengdu China

2. Laboratory of Fluid and Power Machinery, Xihua University Chengdu Sichuan China

Abstract

AbstractKernel‐risk‐sensitive loss (KRSL) achieves an efficient performance surface, which has been applied in the kernel adaptive filters (KAFs) successfully. However, the KRSL based KAFs use the stochastic gradient descent (SGD) method in the optimization, which usually suffer from inadequate accuracy with the slow convergence speed. In this letter, the conjugate gradient method is adopted in the optimization of KRSL function, and the problem of non‐convexity in KRSL is addressed by twice half‐quadratic (HQ) methods. For sparsification, a novel Student's‐t distribution based random Fourier feature (St‐RFF) method for performance improvement of the conventional RFF method. Thus, a novel Student's‐t distribution based random Fourier features kernel‐risk‐sensitive conjugate gradient (St‐RFFKRSCG) algorithm is proposed. Simulations on Mackey‐Glass time series prediction under non‐Gaussian noises confirm the superiorities in terms of accuracy performance, robustness, and computational cost.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3