Wav2vec‐MoE: An unsupervised pre‐training and adaptation method for multi‐accent ASR

Author:

Lin Yuqin1ORCID,Zhang Shiliang1,Gao Zhifu1,Wang Longbiao1,Yang Yanbing1,Dang Jianwu1

Affiliation:

1. Tianjin Key Laboratory of Cognitive Computing and Application College of Intelligence and Computing, Tianjin University Tianjin China

Abstract

AbstractIn real life, either the subjective factors of speakers or the objective environment degrades the performance of automatic speech recognition (ASR). This study focuses on one of the subjective factors, accented speech, and attempts to build a multi‐accent ASR system to solve the degradation caused by different accents, one of whose characteristic is the low resource. To deal with the challenge of the low‐resource data and the different speech styles, a wav2vec‐MoE (mixture of experts) is proposed to adapt the wav2vec 2.0 for multi‐accent ASR. In the wav2vec‐MoE, a domain MoE is developed by introducing pseudo‐domain information in the pre‐training stage, where the domain denotes a collection of speech varied by the same influence factors. The MoE is trained with two strategies according to the proposed domain mismatch assessment between unlabeled speech and target speech, without requiring any explicit domain information. Experiments show that the wav2vec‐MoE achieves a 14.69% relative word error rate reduction (WERR) on the AESRC2020 accent dataset and an 8.79% relative WERR on the Common Voice English dataset.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3