Reliable assessment of uncertainty for appliance recognition in NILM using conformal prediction

Author:

Werthen‐Brabants Lorin1ORCID,Dhaene Tom1,Deschrijver Dirk1

Affiliation:

1. IDLab Ghent University ‐ imec Ghent Belgium

Abstract

AbstractA primary task of Non‐intrusive Load Monitoring (NILM) is the identification of appliances that are switched on or off. However, state‐of‐the‐art machine learning methods such as deep learning do not express uncertainty of their predictions. Especially in cases where appliances are confused, it is desirable that an NILM system can suggest multiple possible predictions to the end‐user, including its confidence and credibility of any given prediction. This can be achieved using conformal prediction, being an effective way to quantify uncertainty of a given machine learning model. In this work, conformal prediction is introduced for NILM and applied to a neural network. The approach is explained and supported by several examples.

Funder

Vlaamse Overheid

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3