Rolling bearing fault diagnosis based on generalized multiscale mean permutation entropy and GWO‐LSSVM

Author:

Liu Li12ORCID,Liu Zijin13,Qian Xuefei4

Affiliation:

1. School of Mechanical Engineering Shenyang Jianzhu University Shenyang China

2. School of Electronics and Control Engineering North China Institute of Aerospace Engineering Langfang China

3. Testing and Certification China Academy of Building Research Beijing China

4. Engineering Department China Petroleum Pipeline Bureau Engineering Co., Ltd Langfang China

Abstract

AbstractFaults in rolling bearings are usually observed through pulses in the vibration signals. However, due to the influence of complex background noise and interference from other machine components present in measurement equipment, vibration signals are typically non‐stationary and often contaminated by noise. Therefore, in order to effectively extract the random variation and non‐linear dynamic variation characteristics of vibration signals, a new method of rolling bearing fault diagnosis based on generalized multiscale mean permutation entropy (GMMPE) and grey wolf optimized least squares support vector machine (GWO‐LSSVM) is put forward in this paper. Based on the multiscale permutation entropy (MPE), the multiscale equalization is firstly used to replace the coarse grained process, and the value of mean is extended to variance to avoid the dynamic mutation of the original signal. Finally, the parameters of LSSVM are optimized by the grey wolf optimization algorithm to achieve accurate identification of fault modes. The results of simulation and experiment show that applying the proposed GMMPE to rolling bearing fault feature extraction is feasible and superior, and the method based on GMMPE and GWO‐LSSVM has better noise robustness, which can effectively achieve rolling bearing fault diagnosis.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3