New insight on filamentary charge‐loaded flows originated by pulsating glow‐type unipolar coronas in atmospheric air

Author:

Lattarulo Francesco1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Polytechnic University of Bari Bari Italy

Abstract

AbstractThe diffusional process involving elastic collisions between charge carriers and neutrals has long been the predominant candidate for post‐injection momentum loss in the far wider drift region outside confined DC corona discharges in gases. A supplementary research paradigm is here put forward for the interest of a greater understanding of corona‐assisted unipolar ion flows in atmospheric air. In this respect, the auto‐pulsing mode of glow‐type coronas in air is modelled as a source of momentum whose conservation is substantially preserved across the external transfer region. The tangible prospect of charge‐bearing flows in the form of a filamentary convection, with negligible drifting component, in buffer gas is put forward in relation to spontaneous symmetry‐breaking instability. This setting bears some resemblance to the self‐organised collective behaviour of self‐propelled (active) particles. The value of this scheme gains strength precisely in relation to the strong inhomogeneity of the electric field surrounding electrodes prone to go into corona. On such a basis, it is believed that the drift of corona‐generated ions deserves to be reconsidered in view of the arguments set out in the present modelling.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3