Enhanced complex wire fault diagnosis via integration of time domain reflectometry and particle swarm optimization with least square support vector machine

Author:

Laib Abderrzak1,Chelabi Mohamed2,Terriche Yacine3,Melit Mohammed2,Boudjefdjouf Hamza4,Ahmed Hafiz5ORCID,Chedjara Zakaria6

Affiliation:

1. Department of Electrical Engineering Faculty of technology University of M'sila M'sila Algeria

2. Department of Electrical Engineering Jijel University Jijel Algeria

3. Ørsted Wind Power A/S Fredericia Denmark

4. Department of Electrical Engineering University of Freres Mentouri Constantine Constantine Algeria

5. Nuclear AMRC, The University of Sheffield Derby UK

6. Faculty of Applied Sciences Ibn Khaldoun University of Tiaret Algeria Tiaret Algeria

Abstract

AbstractUrban power systems rely on intricate wire networks, known as the power grid, which form the essential electric infrastructure in cities. While these networks transmit electricity from power plants to consumers, they are vulnerable to faults caused by manufacturing errors and improper installation, posing risks to system integrity. Thus, accurate identification and assessment of these faults are crucial to prevent damage and maintain system reliability. The objective of this research is to present an innovative and efficient methodology for diagnosing complex wire networks through the application of time domain reflectometry (TDR) combined with the particle swarm optimization (PSO) and least squares support vector machine (LSSVM) algorithm. This research addresses the imperative need to accurately locate and assess breakage faults within wire networks, emphasizing their role in both power transmission and communication infrastructure. To model the TDR answer of a specific complex wire network, a forward model is established utilizing resistance, inductance, capacitance and conductance (RLCG) parameters and the finite difference time domain (FDTD) method. Subsequently, the PSO‐LSSVM approach is used to solve the inverse problem of localizing faults in complex wire networks. The experimental results validate the practicality of this approach in real‐world systems.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3