Vibration feature extraction and fault detection method for transmission towers

Author:

Zhao Long1ORCID,Liu Zhicheng1,Yuan Peng2,Wen Guanru1,Huang Xinbo1ORCID

Affiliation:

1. School of Electronics and Information Xi'an Polytechnic University Xi'an People's Republic of China

2. Xi'an Qinchuang Electric Co., Ltd Xi'an People's Republic of China

Abstract

AbstractThis paper presents a novel bolt looseness detection method for power transmission towers based on vibration signal analysis. The proposed method utilizes pulse excitation to extract the vibration signal of the tower, which is then adaptively decomposed using the Variational Mode Decomposition of Spider Wasp optimizer (SWVMD). This overcomes limitations of traditional Variational Mode Decomposition methods by leveraging bio‐inspired optimization to improve signal decomposition. Simulated signals processed with different optimization methods verify the superiority of the SWO approach. Field tests on a 110‐kV transmission tower further demonstrate the effectiveness of the proposed SWVMD technique for analyzing on‐site vibration data. A new improved intrinsic multiscale sample entropy feature is also introduced for bolt state characterization. A Spider Wasp Support Vector Machine classifier is developed to realize accurate bolt loosening monitoring using the extracted features. Dynamic response tests under varying bolt conditions show that the method can identify early loosening and reduce tower damage risks compared to conventional techniques. This novel vibration‐based detection framework presents an innovative application of nature‐inspired computing for power infrastructure health monitoring.

Funder

Key Research and Development Projects of Shaanxi Province

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3